Perimeter

A perimeter is the boundary of a shape, or the length of that boundary.

A perimeter is a path that surrounds an area. The word comes from the Greek peri (around) and meter (measure). The term may be used either for the path or its length - it can be thought of as the length of the outline of a shape. The perimeter of a circular area is called circumference.

Contents

Practical uses

The formula for the perimeter of a rectangle.
When a circle's diameter is 1, its perimeter is π, which is also the distance it rolls in one revolution.

Calculating the perimeter has considerable practical applications. The perimeter can be used to calculate the length of fence required to surround a yard or garden. The perimeter of a wheel (its circumference) describes how far it will roll in one revolution. Similarly, the amount of string wound around a spool is related to the spool's perimeter.

Formulas

shape formula variables
circle 2 \pi r\, where r is the radius.
triangle a + b + c\, where a, b and c are the lengths of the sides of the triangle.
square 4l where l is the side length
rectangle 2l+2w where l is the length and w is the width
equilateral polygon n \times a\, where n is the number of sides and a is the length of one of the sides.
regular polygon 2nb \sin(\frac{\pi}{n}) where n is the number of sides and b is the distance between center of the polygon and one of the vertices of the polygon.
general polygon a_{1} + a_{2} + a_{3} + \ldots + a_{n} = \sum_{i=1}^{n}a_{i} where a_{i} is the length of the i-th (1st, 2nd, 3rd ... n-th) side of an n-sided polygon.

Perimeter is about the distance around all of a shape for e.g. circle , the perimeter around a circle is called a circumference . Perimeters for more general shapes can be calculated as any path with \int_0^Lds where L is the length of the path and ds is an infinitesimal line element. Both of these must be replaced with other algebraic forms in order to be solved: an advanced notion of perimeter, which includes hypersurfaces bounding volumes in n-dimensional euclidean spaces can be found in the theory of Caccioppoli sets.

See also

External links