Barium

caesiumbariumlanthanum
Sr

Ba

Ra
Appearance
silvery gray
General properties
Name, symbol, number barium, Ba, 56
Pronunciation /ˈbɛəriəm/ BAIR-ee-əm
Element category alkaline earth metals
Group, period, block 2, 6, s
Standard atomic weight 137.33g·mol−1
Electron configuration [Xe] 6s2
Electrons per shell 2, 8, 18, 18, 8, 2 (Image)
Physical properties
Phase solid
Density (near r.t.) 3.51 g·cm−3
Liquid density at m.p. 3.338 g·cm−3
Melting point 1000 K, 727 °C, 1341 °F
Boiling point 2170 K, 1897 °C, 3447 °F
Heat of fusion 7.12 kJ·mol−1
Heat of vaporization 140.3 kJ·mol−1
Specific heat capacity (25 °C) 28.07 J·mol−1·K−1
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 911 1038 1185 1388 1686 2170
Atomic properties
Oxidation states 2
(strongly basic oxide)
Electronegativity 0.89 (Pauling scale)
Ionization energies 1st: 502.9 kJ·mol−1
2nd: 965.2 kJ·mol−1
3rd: 3600 kJ·mol−1
Atomic radius 222 pm
Covalent radius 215±11 pm
Van der Waals radius 268 pm
Miscellanea
Crystal structure body-centered cubic
Magnetic ordering paramagnetic
Electrical resistivity (20 °C) 332 nΩ·m
Thermal conductivity (300 K) 18.4 W·m−1·K−1
Thermal expansion (25 °C) 20.6 µm·m−1·K−1
Speed of sound (thin rod) (20 °C) 1620 m/s
Young's modulus 13 GPa
Shear modulus 4.9 GPa
Bulk modulus 9.6 GPa
Mohs hardness 1.25
CAS registry number 7440-39-3
Most stable isotopes
Main article: Isotopes of barium
iso NA half-life DM DE (MeV) DP
130Ba 0.106% 130Ba is stable with 74 neutrons
132Ba 0.101% 132Ba is stable with 76 neutrons
133Ba syn 10.51 y ε 0.517 133Cs
134Ba 2.417% 134Ba is stable with 78 neutrons
135Ba 6.592% 135Ba is stable with 79 neutrons
136Ba 7.854% 136Ba is stable with 80 neutrons
137Ba 11.23% 137Ba is stable with 81 neutrons
138Ba 71.7% 138Ba is stable with 82 neutrons

Barium (pronounced /ˈbɛəriəm/, BAIR-ee-əm) is a chemical element. It has the symbol Ba, atomic number 56, and is the fifth element in Group 2. Barium is a soft silvery metallic alkaline earth metal. It is never found in nature in its pure form due to its reactivity with air. Its oxide is historically known as baryta but it reacts with water and carbon dioxide and is not found as a mineral. The most common naturally occurring minerals are the very insoluble barium sulfate, BaSO4 (barite), and barium carbonate, BaCO3 (witherite). Barium's name originates from Greek barys (βαρύς), meaning "heavy", describing the high density of some common barium-containing ores.

Metallic barium has few industrial uses, but has been historically used to scavenge air in vacuum tubes. Barium compounds impart a green color to flames and have been used in fireworks. Barium sulfate is used for its heaviness, insolubility, and X-ray opacity. It is used as an insoluble heavy mud-like paste when drilling oil wells, and in purer form, as an X-ray radiocontrast agent for imaging the human gastrointestinal tract. Soluble barium compounds are poisonous due to release of the soluble barium ion, and have been used as rodenticides. New uses for barium continue to be found: it is an essential ingredient in "high temperature" YBCO superconductors.

Contents

Characteristics

Physical properties

Barium is a soft and ductile metal. Its simple compounds are notable for their relatively high (for an alkaline earth element) specific gravity. This is true of the most common barium-bearing mineral, its sulfate barite BaSO4, also called 'heavy spar' due to the high density (4.5 g/cm³).

Chemical properties

Barium reacts exothermically with oxygen at room temperature to form barium oxide and peroxide. The reaction is violent if barium is powdered. It also reacts violently with dilute acids, alcohol and water

Ba + 2 H2O → Ba(OH)2 + H2 (g)

At elevated temperatures, barium combines with chlorine, nitrogen and hydrogen to produce BaCl2, Ba3N2 and BaH2, respectively. Barium reduces oxides, chlorides and sulfides of less reactive metals. For example:

Ba + CdO → BaO + Cd
Ba + ZnCl2 → BaCl2 + Zn
3 Ba + Al2S3 → 3 BaS + 2 Al

When heated with nitrogen and carbon, it forms the cyanide:

Ba + N2 + 2 C → Ba(CN)2

Barium combines with several metals, including aluminium, zinc, lead and tin, forming intermetallic compounds and alloys.[1]

Isotopes

Naturally occurring barium is a mix of seven stable isotopes, the most abundant being 138Ba (71.7 %). There are twenty-two isotopes known, but most of these are highly radioactive and have half-lives in the several millisecond to several day range. The only notable exceptions are 133Ba which has a half-life of 10.51 years, and 137mBa (2.55 minutes).[2]

History

Barium's name originates from Greek βαρύς barys, meaning "heavy", describing the density of some common barium-containing ores. Alchemists in the early Middle Ages knew about some barium minerals. Smooth pebble-like stones of mineral barite found in Bologna, Italy were known as "Bologna stones". The fact that after exposed to light, they would glow for years, attracted witches and alchemists to them.[3]

Carl Scheele identified barite as containing a new element in 1774, but could not isolate barium. Oxidized barium was at first called barote, by Guyton de Morveau, a name which was changed by Antoine Lavoisier to baryta. Barium was first isolated by electrolysis of molten barium salts in 1808, by Sir Humphry Davy in England.[4] Davy, by analogy with calcium named "barium" after baryta, with the "-ium" ending signifying a metallic element.[3]

Occurrence and production

Barite
Trend in world production of barite

The abundance of barium is 0.0425 % in the Earth's crust and 13 µg/L in sea water. It occurs in the minerals barite (as the sulfate) and witherite (as the carbonate).[1] A rare gem containing barium is known, called benitoite. Large deposits of barite are found in China, Germany, India, Morocco, and in the US.[5]

Because barium quickly oxidizes in air, it is difficult to obtain the free metal and it is never found free in nature. The metal is primarily found in, and extracted from, barite. Because barite is so insoluble, it cannot be used directly for the preparation of other barium compounds, or barium metal. Instead, the ore is heated with carbon to reduce it to barium sulfide:[6]

BaSO4 + 2 C → BaS + 2 CO2

The barium sulfide is then hydrolyzed or treated with acids to form other barium compounds, such as the chloride, nitrate, and carbonate.

Barium is commercially produced through the electrolysis of molten barium chloride (BaCl2):

(cathode) Ba2+ + 2 e → Ba
(anode) 2 Cl → Cl2 (g) + 2 e

Barium metal is also obtained by the reduction of barium oxide with finely divided aluminium at temperatures between 1100 and 1200 °C:

4 BaO + 2 Al → BaO·Al2O3 + 3 Ba (g)

The barium vapor is cooled by means of a water jacket and condensed into the solid metal. The solid block may be cast into rods or extruded into wires. Being a flammable solid, it is packaged under argon in steel containers or plastic bags.[1]

Applications

Amoebiasis as seen in radiograph of barium-filled colon
Green barium fireworks

The most important use of elemental barium is as a scavenger or “getter” removing the last traces of oxygen and other gases in electronic vacuum tubes such as television cathode ray tubes. Also, an isotope of barium, 133Ba, is routinely used as a standard source in the calibration of gamma-ray detectors in nuclear physics studies.[1]

Barium is an important component of YBCO superconductors. An alloy of barium with nickel is used in spark plug wire. Barium oxide is used in a coating for the electrodes of fluorescent lamps, which facilitates the release of electrons.

Barium compounds, and especially barite (BaSO4), are extremely important to the petroleum industry.

Precautions

Metallic barium powder is pyrophoric: it can explode in contact with air or oxidizing gases. It is likely to explode when combined with halogenated hydrocarbon solvents. It reacts violently with water. Oxidation occurs very easily and metallic barium should be kept under a petroleum-based fluid (such as kerosene) or other suitable oxygen-free liquids that exclude air.

All water or acid soluble barium compounds are poisonous. At low doses, barium acts as a muscle stimulant, while higher doses affect the nervous system, causing cardiac irregularities, tremors, weakness, anxiety, dyspnea and paralysis. This may be due to its ability to block potassium ion channels which are critical to the proper function of the nervous system.[1] However, individual responses to barium salts vary widely, with some being able to handle barium nitrate casually without problems, and others becoming ill from working with it in small quantities. Barium acetate was used by Marie Robards to poison her father in Texas in 1993. She was tried and convicted in 1996.[12]

Barium sulfate can be taken orally because it is highly insoluble in water, and is eliminated completely from the digestive tract.[1] Unlike other heavy metals, barium does not bioaccumulate.[13][14] However, inhaled dust containing barium compounds can accumulate in the lungs, causing a benign condition called baritosis.[15]

See also


References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 77–78. ISBN 0070494398. http://books.google.com/?id=Xqj-TTzkvTEC&pg=PA243. Retrieved 2009-06-06. 
  2. David R. Lide, Norman E. Holden (2005). "Section 11, Table of the Isotopes". CRC Handbook of Chemistry and Physics, 85th Edition. Boca Raton, Florida: CRC Press. 
  3. 3.0 3.1 Robert E. Krebs (2006). The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. p. 80. ISBN 0313334382. http://books.google.com/?id=yb9xTj72vNAC. 
  4. Davy, H. (1808) "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia," Philosophical Transactions of the Royal Society of London, vol. 98, pages 333-370.
  5. 5.0 5.1 5.2 5.3 C. R. Hammond (2000). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0849304814. 
  6. "Toxicological Profile for Barium and Barium Compounds. Agency for Toxic Substances and Disease Registry". CDC. 2007.. http://www.atsdr.cdc.gov/toxprofiles/tp24.pdf. 
  7. Chris J. Jones, John Thornback (2007). Medicinal applications of coordination chemistry. Royal Society of Chemistry. p. 102. ISBN 0854045961. http://books.google.com/?id=uEJHsZWyO-EC. 
  8. Michael S. Russell, Kurt Svrcula (2008). Chemistry of Fireworks. Royal Society of Chemistry. p. 110. ISBN 0854041273. http://books.google.com/?id=yxRyOf8jFeQC. 
  9. Brent, G. F.; Harding, M. D. (1995). "Surfactant coatings for the stabilization of barium peroxide and lead dioxide in pyrotechnic compositions". Propellants Explosives Pyrotechnics 20: 300. doi:10.1002/prep.19950200604. 
  10. "Battery Breakthrough?". http://www.technologyreview.com/Biztech/18086/. Retrieved 2009-06-06. 
  11. "Crystran Ltd. Optical Component Materials". http://www.crystran.co.uk/barium-fluoride-baf2.htm. Retrieved 2010-12-29. 
  12. "Boyfriend fight preceded Roanoke mom's slaying". http://www.buffalo.edu/news/pdf/October08/DallanMorningNewsEwingSlaying.pdf. Retrieved 2009-06-06. 
  13. "Toxicity Profiles, Ecological Risk Assessment". http://www.epa.gov/region5/superfund/ecology/html/toxprofiles.htm#ba. Retrieved 2009-06-06. 
  14. Moore, J. W. (1991). Inorganic Contaminants of Surface Waters, Research and Monitoring Priorities. New York: Springer-Verlag. 
  15. Doig AT (February 1976). "Baritosis: a benign pneumoconiosis". Thorax 31 (1): 30–9. doi:10.1136/thx.31.1.30. PMID 1257935. 

External links