|
|||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unknown | |||||||||||||||||||||||||||||||||||||||||||||||||
General properties | |||||||||||||||||||||||||||||||||||||||||||||||||
Name, symbol, number | roentgenium, Rg, 111 | ||||||||||||||||||||||||||||||||||||||||||||||||
Pronunciation | ![]() runt-GEN-ee-əm or /rɛntˈɡɛniəm/ rent-GEN-ee-əm |
||||||||||||||||||||||||||||||||||||||||||||||||
Element category | transition metal | ||||||||||||||||||||||||||||||||||||||||||||||||
Group, period, block | 11, 7, d | ||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | [281]g·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | predicted [Rn] 5f14 6d10 7s1 | ||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 32, 32, 18, 1 (Image) | ||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||
Phase | unknown | ||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||
Miscellanea | |||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 54386-24-2 | ||||||||||||||||||||||||||||||||||||||||||||||||
Most stable isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||
Main article: Isotopes of roentgenium | |||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Roentgenium (pronounced /rɛntˈɡɛniəm/ rent-GEN-ee-əm or /rʌntˈɡɛniəm/ ( listen) runt-GEN-ee-əm) is a synthetic radioactive chemical element with the symbol Rg and atomic number 111. It is placed as the heaviest member of the group 11 (IB) elements, although a sufficiently stable isotope is not known at this time that would allow its position as a heavier homologue of gold to be confirmed.
Roentgenium was called unununium before it was formally discovered.
Roentgenium was first observed in 1994 and several isotopes have been synthesized since its first discovery. The most stable known isotope is 281Rg with a half-life of ~20 seconds, which decays by spontaneous fission, like many other N=170 isotones.
Contents |
Roentgenium was officially discovered by Peter Armbruster, Gottfried Münzenberg, and their team working at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany on December 8, 1994.[1] Only three atoms of it were observed (all 272Rg), by the cold fusion between nickel ions and a bismuth target in a linear accelerator:
In 2001, the IUPAC/IUPAP Joint Working Party (JWP) concluded that there was insufficient evidence for the discovery at that time.[2] The GSI team repeated their experiment in 2002 and detected a further 3 atoms.[3][4] In their 2003 report, the JWP decided that the GSI team should be acknowledged as the discoverers.[5]
The name roentgenium (Rg) was proposed by the GSI team[6] in honor of the German physicist Wilhelm Conrad Röntgen, and was accepted as a permanent name on November 1, 2004.[7] Previously the element was known under the temporary IUPAC systematic element name unununium, Uuu.
The below table contains various combinations of targets and projectiles (both at max no. of neutrons) which could be used to form compound nuclei with Z=111.
Target | Projectile | CN | Attempt result |
---|---|---|---|
208Pb | 65Cu | 273Rg | Successful reaction |
209Bi | 64Ni | 273Rg | Successful reaction |
232Th | 45Sc | 277Rg | Reaction yet to be attempted |
231Pa | 48Ca | 279Rg | Reaction yet to be attempted |
238U | 41K | 280Rg | Reaction yet to be attempted |
237Np | 40Ar | 277Rg | Reaction yet to be attempted |
244Pu | 37Cl | 281Rg | Reaction yet to be attempted |
243Am | 36S | 279Rg | Reaction yet to be attempted |
248Cm | 31P | 279Rg | Reaction yet to be attempted |
249Bk | 30Si | 279Rg | Reaction yet to be attempted |
249Cf | 27Al | 276Rg | Reaction yet to be attempted |
This section deals with the synthesis of nuclei of roentgenium by so-called "cold" fusion reactions. These are processes which create compound nuclei at low excitation energy (~10-20 MeV, hence "cold"), leading to a higher probability of survival from fission. The excited nucleus then decays to the ground state via the emission of one or two neutrons only.
First experiments to synthesize element 111 were performed by the Dubna team in 1986 using this cold fusion reaction. No atoms were identified that could be assigned to atoms of element 111 and a production cross-section limit of 4 pb was determined. After an upgrade of their facilities, the team at GSI successfully detected 3 atoms of 272Rg in their discovery experiment.[1] A further 3 atoms were synthesized in 2000.[3] The discovery of roentgenium was confirmed in 2003 when a team at RIKEN measured the decays of 14 atoms of 272Rg during the measurement of the 1n excitation function.[8]
In 2004, as part of their study of odd-Z projectiles in cold fusion reactions, the team at LBNL detected a single atom of 272Rg in this new reaction.[9][10]
Isotopes of roentgenium have also been observed in the decay of heavier elements. Observations to date are outlined in the table below:
Evaporation residue | Observed Rg isotope |
---|---|
288Uup | 280Rg [11] |
287Uup | 279Rg [11] |
282Uut | 278Rg [12] |
278Uut | 274Rg [12] |
Isotope | Year discovered | Discovery reaction |
---|---|---|
272Rg | 1994 | 209Bi(64Ni,n) |
273Rg | unknown | |
274Rg | 2004 | 209Bi(70Zn,n) [12] |
275Rg | unknown | |
276Rg | unknown | |
277Rg | unknown | |
278Rg | 2006 | 237Np(48Ca,3n) [12] |
279Rg | 2003 | 243Am(48Ca,4n) [11] |
280Rg | 2003 | 243Am(48Ca,3n) [11] |
281Rg | 2009 | 249Bk(48Ca,4n) |
282Rg | 2009 | 249Bk(48Ca,3n) |
Two atoms of 274Rg have been observed in the decay chains starting with 278Uut. The two events occur with different energies and with different lifetimes. In addition, the two entire decay chains appear to be different. This suggests the presence of two isomeric levels but further research is required.
The direct production of 272Rg has provided four alpha lines at 11.37, 11.03, 10.82, and 10.40 MeV. The GSI measured a half-life of 1.6 ms whilst recent data from RIKEN hav given a half-life of 3.8 ms. The conflicting data may be due to isomeric levels but the current data are insufficient to come to any firm assignments.
The table below provides cross-sections and excitation energies for cold fusion reactions producing roentgenium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.
Projectile | Target | CN | 1n | 2n | 3n |
---|---|---|---|---|---|
64Ni | 209Bi | 273Rg | 3.5 pb, 12.5 MeV | ||
65Cu | 208Pb | 273Rg | 1.7 pb, 13.2 MeV |
The stable group 11 elements, copper, silver, and gold all have an outer electron configuration nd10(n+1)s1. For each of these elements, their first excited state has a configuration nd9(n+1)s2. Due to spin-orbit coupling between the d electrons, this state is split into a pair of energy levels. For copper, the difference in energy between the ground state and lowest excited state causes the metal to appear reddish. For silver, the energy gap widens and it becomes silvery. However, as Z increases, the excited levels are stabilised by relativistic effects and in gold the energy gap decreases again and it appears gold. For roentgenium, calculations indicate that the 6d97s2 level is stabilised to such an extent that it becomes the ground state. The resulting energy difference between the new ground state and the first excited state is similar to that of silver and roentgenium is expected to be silvery in appearance.[13]
Element 111 is projected to be the ninth member of the 6d series of transition metals and the heaviest member of group 11 (IB) in the Periodic Table, below copper, silver, and gold. Each of the members of this group show different stable states. Copper forms a stable +2 state, while silver is predominantly found as silver(I) and gold as gold(III). Copper(I) and silver(II) are also relatively well-known. Roentgenium is therefore expected to predominantly form a stable +3 state.
The heavier members of this group are well known for their lack of reactivity or noble character. Silver and gold are both inert to oxygen, but are attacked by the halogens. In addition, silver is attacked by sulfur and hydrogen sulfide, highlighting its higher reactivity compared to gold. Roentgenium is expected to be even more noble than gold and can be expected to be inert to oxygen and halogens. The most-likely reaction is with fluorine to form a trifluoride, RgF3.
H | He | ||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||||||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Uuq | Uup | Uuh | Uus | Uuo | ||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
|