|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
silvery white![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name, symbol, number | zirconium, Zr, 40 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pronunciation | /zərˈkoʊniəm/ zər-KOH-ni-əm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element category | transition metal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, period, block | 4, 5, d | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | 91.224g·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Kr] 5s2 4d2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 10, 2 (Image) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 6.52 g·cm−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density at m.p. | 5.8 g·cm−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 2128 K, 1855 °C, 3371 °F | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 4682 K, 4409 °C, 7968 °F | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 14 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 573 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific heat capacity | (25 °C) 25.36 J·mol−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vapor pressure | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | 4, 3, 2, 1,[1] (amphoteric oxide) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 1.33 (Pauling scale) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies | 1st: 640.1 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2nd: 1270 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd: 2218 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | 160 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 175±7 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellanea | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | paramagnetic[2] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | (20 °C) 421 nΩ·m | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | (300 K) 22.6 W·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | (25 °C) 5.7 µm·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (20 °C) 3800 m/s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 88 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 33 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 91.1 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.34 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 5.0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vickers hardness | 903 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 650 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 7440-67-7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Most stable isotopes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main article: Isotopes of zirconium | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Zirconium (pronounced /zərˈkoʊniəm/ zər-KOH-ni-əm) is a chemical element with the symbol Zr and atomic number 40. Its atomic mass is 91.224. It is a lustrous, grey-white, strong transition metal that resembles titanium. Zirconium is used as an alloying agent for its strong resistance to corrosion. It is never found as a native metal; it is obtained mainly from the mineral zircon, which can be purified with chlorine. Zirconium was first isolated in an impure form in 1824 by Jöns Jakob Berzelius.
Zirconium has no known biological role. Zirconium forms both inorganic and organometallic compounds such as zirconium dioxide and zirconocene dichloride, respectively. There are five naturally occurring isotopes, three of which are stable. Short-term exposure to zirconium powder causes minor irritation, and inhalation of zirconium compounds can cause skin and lung granulomas.
Contents |
Zirconium is a lustrous, grayish-white, soft, ductile, and malleable metal which is solid at room temperature, though it becomes hard and brittle at lower purities.[4][5] In powder form, zirconium is highly flammable, but the solid form is far less prone to ignition. Zirconium is highly resistant to corrosion by alkalis, acids, salt water, and other agents.[6] However, it will dissolve in hydrochloric and sulfuric acid, especially when fluorine is present.[7] Alloys with zinc become magnetic below 35 K.[6]
Zirconium's melting point is at 1855°C, and its boiling point 4409°C.[6] Zirconium has an electronegativity of 1.33 on the Pauling scale. Of the elements within d-block, zirconium has the fourth lowest electronegativity after yttrium, lutetium, and hafnium.[8]
Because of zirconium's excellent resistance to corrosion, it is often used as an alloying agent in materials that are exposed to corrosive agents, such as surgical appliances, explosive primers, vacuum tube getters and filaments. Zirconium dioxide (ZrO2) is used in laboratory crucibles, metallurgical furnaces, as a refractory material,[6] and it can be sintered into a ceramic knife. Zircon (ZrSiO4) is cut into gemstones for use in jewelry. Zirconium carbonate (3ZrO2·CO2·H2O) was used in lotions to treat poison ivy, but this was discontinued because it occasionally caused bad skin reactions.[4]
Ninety percent of all zirconium produced is used in nuclear reactors (in the form of zircaloys) because of its low neutron-capture cross-section and resistance to corrosion.[5][6] Zirconium alloys are used in space vehicle parts for their resistance to heat, an important quality given the extreme heat associated with atmospheric reentry.[9] Zirconium is also a component in some abrasives, such as grinding wheels and sandpaper.[10] Zirconium is used in weapons such as the BLU-97/B Combined Effects Bomb for incendiary effect.
High temperature parts such as combustors, blades and vanes in modern jet engines and stationary gas turbines are to an ever increasing extent being protected by thin ceramic layers which reduce the metal temperatures below and keep them from undergoing (too) extensive deformation which could possibly result in early failure. They are absolutely necessary for the most modern gas turbines which are driven to ever higher firing temperatures to produce more electricity at less CO2. These ceramic layers are usually composed by a mixture of zirconium and yttrium oxide.[11]
Upon being collected from coastal waters, the solid mineral zircon is purified by spiral concentrators to remove excess sand and gravel and by magnetic separators to remove ilmenite and rutile. The byproducts can then be dumped back into the water safely, as they are all natural components of beach sand. The refined zircon is then purified into pure zirconium by chlorine or other agents, then sintered until sufficiently ductile for metalworking.[5] Zirconium and hafnium are both contained in zircon and they are quite difficult to separate due to their extremely similar chemical properties.[9] Usually, an ion exchange process is used to separate them.
The zirconium-containing mineral zircon, or its variations (jargoon, hyacinth, jacinth, ligure), were mentioned in biblical writings.[6][9] The mineral was not known to contain a new element until 1789,[10] when Klaproth analyzed a jargoon from the island of Sri Lanka in the Indian Ocean. He named the new element Zirkonerde (zirconia).[6] Humphry Davy attempted to isolate this new element in 1808 through electrolysis, but failed.[4] Zirconium (from Syriac ܙܐܪܓܥܢܥ zargono,[12] Arabic zarkûn ئشقنعى from Persian zargûn زرگون meaning "gold like")[9] was first isolated in an impure form in 1824 by Berzelius by heating a mixture of potassium and potassium-zirconium fluoride in a small decomposition process conducted in an iron tube.[6] These words were adapted into German Zirkon which became the source of the English words: Zircon and Zirconium. [13]
The crystal bar process (or Iodide process), discovered by Anton Eduard van Arkel and Jan Hendrik de Boer in 1925, was the first industrial process for the commercial production of pure metallic zirconium. The process involved thermally decomposing zirconium tetraiodide. It was superseded in 1945 by the much cheaper Kroll process developed by William Justin Kroll, in which zirconium tetrachloride is broken down by magnesium.[5][14]
See also Category: Zirconium minerals
Zirconium has a concentration of about 130 mg/kg within the earth's crust and about 0.026 μg/L in sea water,[15] though it is never found in nature as a native metal. The principal commercial source of zirconium is the zirconium silicate mineral, zircon (ZrSiO4),[4] which is found primarily in Australia, Brazil, India, Russia, South Africa, and the United States, as well as in smaller deposits around the world.[5] 80% of zircon mining occurs in Australia and South Africa.[4] Zircon resources exceed 60 million metric tons worldwide[16] and annual worldwide zirconium production is approximately 900,000 metric tons.[15]
Zircon is a by-product of the mining and processing of the titanium minerals ilmenite and rutile, as well as tin mining.[17] From 2003 to 2007, zircon prices have steadily increased from $360 to $840 per metric ton.[16] Zirconium also occurs in more than 140 other recognized mineral species including baddeleyite and kosnarite.[18] This metal is commercially produced mostly by the reduction of the zirconium(IV) chloride with magnesium metal in the Kroll process.[6] Commercial-quality zirconium for most uses still has a content of 1% to 3% hafnium.[4]
This element is relatively abundant in S-type stars, and it has been detected in the sun and in meteorites. Lunar rock samples brought back from several Apollo program missions to the moon have a quite high zirconium oxide content relative to terrestrial rocks.[6]
Zirconium has no known biological role, though zirconium salts are of low toxicity. The human body contains, on average, only 1 milligram of zirconium, and daily intake is approximately 50 μg per day. Zirconium content in human blood is as low as 10 parts per billion. Aquatic plants readily take up soluble zirconium, but it is rare in land plants. 70% of plants have no zirconium content at all, and those that do have as little as 5 parts per billion.[4]
As a transition metal, zirconium forms various inorganic compounds, such as zirconium dioxide (ZrO2). This compound, also referred to as zirconia, has exceptional fracture toughness and chemical resistance, especially in its cubic form.[19] These properties make zirconia useful as a thermal barrier coating,[20] though it is also a common diamond substitute.[19] Zirconium tungstate is an unusual substance in that it shrinks in all directions when heated, whereas most other substances expand when heated.[6] ZrZn2 is one of only two substances to exhibit superconductivity and ferromagnetism simultaneously, with the other being UGe2.[21] Other inorganic zirconium compounds include zirconium(II) hydride, zirconium nitride, and zirconium tetrachloride (ZrCl4), which is used in the Friedel-Crafts reaction.[22]
Organozirconium chemistry is the study of compounds containing a carbon-zirconium bond. These organozirconium compounds are often employed as polymerization catalysts. The first such compound was zirconocene dibromide, prepared in 1952 by John M. Birmingham at Harvard University.[23] Schwartz's reagent, prepared in 1970 by P. C. Wailes and H. Weigold,[24] is a metallocene used in organic synthesis for transformations of alkenes and alkynes.[25]
Naturally occurring zirconium is composed of five isotopes. 90Zr, 91Zr, and 92Zr are stable. 94Zr has a half-life of 1.10×1017 years. 96Zr has a half-life of 2.4×1019 years, making it the longest-lived radioisotope of zirconium. Of these natural isotopes, 90Zr is the most common, making up 51.45% of all zirconium. 96Zr is the least common, comprising only 2.80% of zirconium.[26]
28 artificial isotopes of zirconium have been synthesized, ranging in atomic mass from 78 to 110. 93Zr is the longest-lived artificial isotope, with a half-life of 1.53×106 years. 110Zr, the heaviest isotope of zirconium, is also the shortest-lived, with an estimated half-life of only 30 milliseconds. Radioactive isotopes at or above mass number 93 decay by β−, whereas those at or below 89 decay by β+. The only exception is 88Zr, which decays by ε.[26]
Zirconium also has six metastable isomers: 83mZr, 85mZr, 89mZr, 90m1Zr, 90m2Zr, and 91mZr. Of these, 90m2Zr has the shortest half-life at 131 nanoseconds. 89mZr is the longest lived with a half-life of 4.161 minutes.[26]
Short-term exposure to zirconium powder can cause irritation, but only contact with the eyes requires medical attention.[27] Inhalation of zirconium compounds can cause skin and lung granulomas. Zirconium aerosols can cause pulmonary granulomas. Persistent exposure to zirconium tetrachloride resulted in increased mortality in rats and guinea pigs and a decrease of blood hemoglobin and red blood cells in dogs. OSHA recommends a 5 mg/m3 time weighted average limit and a 10 mg/m3 short-term exposure limit.[28]
H | He | ||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||||||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Uuq | Uup | Uuh | Uus | Uuo | ||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
|
|